论文标题
通过增强内容和样式来利用分发示例
Harnessing Out-Of-Distribution Examples via Augmenting Content and Style
论文作者
论文摘要
机器学习模型很容易受到分数过失(OOD)的示例,这种问题引起了很多关注。但是,当前的方法缺乏对不同类型的OOD数据的完全理解:有一些良性的OOD数据可以适当地适应以增强学习性能,而其他MALIGN OOD数据将严重地退化分类结果。要利用数据,本文提出了一种引擎盖方法,该方法可以利用每个图像实例中的内容和样式来识别良性和恶性数据。特别是,我们通过构建结构性因果模型来设计一个各种推理框架,以在因果关系上脱离内容和样式特征。随后,我们通过干预过程分别提高内容和样式,分别产生恶性和良性OOD数据。 Banign OOD数据包含新型样式,但持有我们感兴趣的内容,并且可以利用它们来帮助培训风格不变的模型。相比之下,MALIGN OOD数据继承了未知内容,但通过检测它们可以提高模型的鲁棒性,以抗欺骗异常。得益于拟议的新型分解和数据增强技术,Hood可以有效地处理未知和开放环境中的OOD示例,在未知和开放环境中,在三种典型的OOD应用程序中,其有效性得到了经验验证,包括OOD检测,开放式的半监督学习和开放式域名适应。
Machine learning models are vulnerable to Out-Of-Distribution (OOD) examples, and such a problem has drawn much attention. However, current methods lack a full understanding of different types of OOD data: there are benign OOD data that can be properly adapted to enhance the learning performance, while other malign OOD data would severely degenerate the classification result. To Harness OOD data, this paper proposes a HOOD method that can leverage the content and style from each image instance to identify benign and malign OOD data. Particularly, we design a variational inference framework to causally disentangle content and style features by constructing a structural causal model. Subsequently, we augment the content and style through an intervention process to produce malign and benign OOD data, respectively. The benign OOD data contain novel styles but hold our interested contents, and they can be leveraged to help train a style-invariant model. In contrast, the malign OOD data inherit unknown contents but carry familiar styles, by detecting them can improve model robustness against deceiving anomalies. Thanks to the proposed novel disentanglement and data augmentation techniques, HOOD can effectively deal with OOD examples in unknown and open environments, whose effectiveness is empirically validated in three typical OOD applications including OOD detection, open-set semi-supervised learning, and open-set domain adaptation.