论文标题

给定尺寸的图形的最大光谱半径和禁止子图

The maximum spectral radius of graphs of given size with forbidden subgraph

论文作者

Fang, Xiaona, You, Lihua

论文摘要

令$ g $为$ m $和$ρ(g)$的图表是其邻接矩阵的光谱半径。如果图形不包含$ f $ $ f $的子图,则据说该图是$ f $ f的。在本文中,我们证明,如果$ g $是$ k_ {2,r+1} $ - 带有$ m \ geq(4r+2)^2+1 $的免费非星形图,则是$ρ(g)\ leq p(s_m^1)$,如果是均等的,则只有$ g \ g \ g \ cong \ can_m^1 $。最近,Li,Sun和Wei表明,对于任何$θ_{1,2,3} $ - 大小的免费图$ M \ geq 8 $,$ρ(g)\ leq \ frac \ frac {1+ \ sqrt {4m-3}}} s _ {\ frac {m+3} {2},2} $。但是,当$ m $均匀时,这是无法实现的。我们证明,如果$ g $是$θ_{1,2,3} $ - 免费和$ g \ ncong s _ {\ frac {\ frac {m+3} {2} {2} {2} $,带有$ m \ geq 22 $,然后是$ρ(g)\ leq p(m,1}) f_ {m,1} $和$ρ(g)\ leqρ(f_ {m,2})$如果$ m $是奇怪的,则在且仅当$ g \ cong f_ {m,2} $时具有平等性。

Let $G$ be a graph of size $m$ and $ρ(G)$ be the spectral radius of its adjacency matrix. A graph is said to be $F$-free if it does not contain a subgraph isomorphic to $F$. In this paper, we prove that if $G$ is a $K_{2,r+1}$-free non-star graph with $m\geq (4r+2)^2+1$, then $ρ(G)\leq ρ(S_m^1)$, with equality if and only if $G\cong S_m^1$. Recently, Li, Sun and Wei showed that for any $θ_{1,2,3}$-free graph of size $m\geq 8$, $ρ(G)\leq \frac{1+\sqrt{4m-3}}{2}$, with equality if and only if $G\cong S_{\frac{m+3}{2},2}$. However, this bound is not attainable when $m$ is even. We proved that if $G$ is $θ_{1,2,3}$-free and $G\ncong S_{\frac{m+3}{2},2}$ with $m\geq 22$, then $ρ(G)\leq ρ(F_{m,1})$ if $m$ is even, with equality if and only if $G\cong F_{m,1}$, and $ρ(G)\leq ρ(F_{m,2})$ if $m$ is odd, with equality if and only if $G\cong F_{m,2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源