论文标题

使用空中机器人对环境的身体互动和操纵

Physical Interaction and Manipulation of the Environment using Aerial Robots

论文作者

Keipour, Azarakhsh

论文摘要

空中机器人与环境的物理相互作用具有无数的潜在应用,并且是一个有许多开放挑战的新兴领域。已经引入了完整的多运动,以应对其中一些挑战。它们提供了对位置和方向的完全控制,并消除了将多道操作臂连接到机器人的需求。但是,在现实世界应用程序中使用它们之前,有许多开放问题。研究人员在有限的设置中引入了一些用于物理互动的方法。他们的实验主要使用原型级软件,而没有有效与现实世界应用集成的有效途径。我们描述了一种新的具有成本效益的解决方案,该解决方案将这些机器人与现有软件和硬件飞行系统用于现实世界应用程序,并将其扩展到物理互动应用程序。另一方面,现有的控制机器人的控制方法对机器人可用的推力和时刻进行了保守的限制。使用保守的假设对这些已经有利的机器人,它们的相互作用甚至不那么最佳,甚至可能导致许多可行的物理互动应用变得不可行。这项工作提出了一种实时方法,用于估计机器人可以用来优化其物理相互作用性能的完整的即时可用力和矩。最后,许多现实世界的应用程序可以改善现有的手动解决方案处理可变形对象。但是,对他们的操纵的看法和计划仍然具有挑战性。这项研究探讨了如何将空中物理互动扩展到可变形物体。它提供了一种用于操纵可变形的一维对象的检测方法,并介绍了计划操纵这些对象的新观点。

The physical interaction of aerial robots with their environment has countless potential applications and is an emerging area with many open challenges. Fully-actuated multirotors have been introduced to tackle some of these challenges. They provide complete control over position and orientation and eliminate the need for attaching a multi-DoF manipulation arm to the robot. However, there are many open problems before they can be used in real-world applications. Researchers have introduced some methods for physical interaction in limited settings. Their experiments primarily use prototype-level software without an efficient path to integration with real-world applications. We describe a new cost-effective solution for integrating these robots with the existing software and hardware flight systems for real-world applications and expand it to physical interaction applications. On the other hand, the existing control approaches for fully-actuated robots assume conservative limits for the thrusts and moments available to the robot. Using conservative assumptions for these already-inefficient robots makes their interactions even less optimal and may even result in many feasible physical interaction applications becoming infeasible. This work proposes a real-time method for estimating the complete set of instantaneously available forces and moments that robots can use to optimize their physical interaction performance. Finally, many real-world applications where aerial robots can improve the existing manual solutions deal with deformable objects. However, the perception and planning for their manipulation is still challenging. This research explores how aerial physical interaction can be extended to deformable objects. It provides a detection method suitable for manipulating deformable one-dimensional objects and introduces a new perspective on planning the manipulation of these objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源