论文标题

真实场景的本地重新确认

Local Relighting of Real Scenes

论文作者

Cui, Audrey, Jahanian, Ali, Lapedriza, Agata, Torralba, Antonio, Mahdizadehaghdam, Shahin, Kumar, Rohit, Bau, David

论文摘要

我们介绍了本地重新考虑的任务,该任务通过打开图像中可见的光源来改变场景的照片。这项新任务与传统的图像重新确定问题不同,因为它引入了检测光源并推断出从它们中散发出的光模式的挑战。我们提出了一种用于本地重新设置的方法,该方法通过使用另一个模型的合成生成的图像对来训练模型,而无需对任何新型图像数据集进行监督。具体而言,我们从样式空间操纵的gan中收集了配对的训练图像;然后,我们使用这些图像来训练有条件的图像到图像模型。为了基于本地重新测试,我们介绍了Lonoff,这是一个在室内空间中拍摄的306张精确对齐图像的集合,这些图像在室内空间中拍摄了不同的灯光组合。我们表明,我们的方法显着优于基于GAN反转的基线方法。最后,我们演示了分别控制不同光源的方法的扩展。我们邀请社区解决这项新的当地重新任务。

We introduce the task of local relighting, which changes a photograph of a scene by switching on and off the light sources that are visible within the image. This new task differs from the traditional image relighting problem, as it introduces the challenge of detecting light sources and inferring the pattern of light that emanates from them. We propose an approach for local relighting that trains a model without supervision of any novel image dataset by using synthetically generated image pairs from another model. Concretely, we collect paired training images from a stylespace-manipulated GAN; then we use these images to train a conditional image-to-image model. To benchmark local relighting, we introduce Lonoff, a collection of 306 precisely aligned images taken in indoor spaces with different combinations of lights switched on. We show that our method significantly outperforms baseline methods based on GAN inversion. Finally, we demonstrate extensions of our method that control different light sources separately. We invite the community to tackle this new task of local relighting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源