论文标题
可稳定的$γ$ - 有限状态马尔可夫连锁级的二级大偏差率功能
Metastable $Γ$-expansion of finite state Markov chains level two large deviations rate functions
论文作者
论文摘要
我们检查了马尔可夫链亚稳态行为的两个分析表征。第一个以其过渡概率表达,第二个以其较大偏差率的功能来表达。 考虑一系列连续的时间马尔可夫链$(x^{(n)} _ t:t \ ge 0)$在固定有限状态空间$ v $上演变。根据关于跳高率的假设,我们证明存在时间尺度$θ^{((p)} _ n $,并且与脱节的概率度量支持$π^{(p)} _ j $,$ j $,$ j \ in s_p $,$ 1 \ le p \ le p \ le p \ le p \ le q $ q $ in( $θ^{(k+1)} _ n/θ^{((k)} _ n \ to \ infty $,(b)对于所有$ p $,$ x \ in v $,$ t> 0 $,从$ x $开始,从$ x $开始,$ x^{(n)} $ x^{(n)} _ {t uniftity n y Infty t unsiste概率的凸组合测量$π^{(p)} _ j $。凸组合的权重自然取决于$ x $和$ t $。 令$ i_n $为$ x^{(n)} _ t $的第二级大偏差率,为$ t \ to \ infty $。在相同的假设上,关于跳高速度和假设,此外,该过程是可逆的,我们证明$ i_n $可以写入$ i_n = i^{(0)} \,+\,\ sum_ {1 \ le le p \ le p \ le p \ le q}(1/θ^{(p) $ i^{(p)} $仅在凸的组合中以$π^{(p)} _ j $:$ i^{(p)}(μ)<\ infty $ if,仅在s_p} j $ in Motor s_p} op s__jj \,po)j $ j \ y y j $ j \ j $ j \ jjj \,po)的$π^{(p)} _ j $:$ i^{(p)<\ infty $ j $ j $ j $ j $ j $ j \ j \,jjjj \,po) $ω$ in $ s_p $。
We examine two analytical characterisation of the metastable behavior of a Markov chain. The first one expressed in terms of its transition probabilities, and the second one in terms of its large deviations rate functional. Consider a sequence of continuous-time Markov chains $(X^{(n)}_t:t\ge 0)$ evolving on a fixed finite state space $V$. Under a hypothesis on the jump rates, we prove the existence of times-scales $θ^{(p)}_n$ and probability measures with disjoint supports $π^{(p)}_j$, $j\in S_p$, $1\le p \le q$, such that (a) $θ^{(1)}_n \to \infty$, $θ^{(k+1)}_n/θ^{(k)}_n \to \infty$, (b) for all $p$, $x\in V$, $t>0$, starting from $x$, the distribution of $X^{(n)}_{t θ^{(p)}_n}$ converges, as $n\to\infty$, to a convex combination of the probability measures $π^{(p)}_j$. The weights of the convex combination naturally depend on $x$ and $t$. Let $I_n$ be the level two large deviations rate functional for $X^{(n)}_t$, as $t\to\infty$. Under the same hypothesis on the jump rates and assuming, furthermore, that the process is reversible, we prove that $I_n$ can be written as $I_n = I^{(0)} \,+\, \sum_{1\le p\le q} (1/θ^{(p)}_n) \, I^{(p)}$ for some rate functionals $I^{(p)}$ which take finite values only at convex combinations of the measures $π^{(p)}_j$: $I^{(p)}(μ) < \infty$ if, and only if, $μ= \sum_{j\in S_p} ω_j\, π^{(p)}_j$ for some probability measure $ω$ in $S_p$.