论文标题
AI增强的迭代求解器,用于加速大规模参数化系统的解决方案
AI-enhanced iterative solvers for accelerating the solution of large scale parametrized systems
论文作者
论文摘要
机器学习领域的最新进展开放了高性能计算的新时代。机器学习算法的应用在开发复杂问题的准确和成本效益的替代物中已经引起了科学家的主要关注。尽管具有强大的近似功能,但代理人仍无法为问题产生“精确”解决方案。为了解决此问题,本文利用了最新的ML工具,并提供了线性方程系统的自定义迭代求解器,能够在任何所需的准确性级别求解大规模参数化问题。具体而言,建议的方法包括以下两个步骤。首先,使用深度进馈神经网络和卷积自动编码器,使用相应的解决方案进行了简化的模型评估集,并使用相应的解决方案来建立从问题的参数空间到其解决方案空间的近似映射。该映射是一种手段,可以以微不足道的计算成本来获得对系统对新查询点的响应的非常准确的初始预测。随后,开发了一种受代数多机方法启发的迭代求解器与适当的正交分解(称为pod-2g),从而连续地完善了针对确切的系统解决方案的初始预测。在大规模系统的几个数值示例中,证明了POD-2G作为独立求解器或作为预处理梯度方法的预处理,结果表明其优于常规迭代解决方案方案。
Recent advances in the field of machine learning open a new era in high performance computing. Applications of machine learning algorithms for the development of accurate and cost-efficient surrogates of complex problems have already attracted major attention from scientists. Despite their powerful approximation capabilities, however, surrogates cannot produce the `exact' solution to the problem. To address this issue, this paper exploits up-to-date ML tools and delivers customized iterative solvers of linear equation systems, capable of solving large-scale parametrized problems at any desired level of accuracy. Specifically, the proposed approach consists of the following two steps. At first, a reduced set of model evaluations is performed and the corresponding solutions are used to establish an approximate mapping from the problem's parametric space to its solution space using deep feedforward neural networks and convolutional autoencoders. This mapping serves a means to obtain very accurate initial predictions of the system's response to new query points at negligible computational cost. Subsequently, an iterative solver inspired by the Algebraic Multigrid method in combination with Proper Orthogonal Decomposition, termed POD-2G, is developed that successively refines the initial predictions towards the exact system solutions. The application of POD-2G as a standalone solver or as preconditioner in the context of preconditioned conjugate gradient methods is demonstrated on several numerical examples of large scale systems, with the results indicating its superiority over conventional iterative solution schemes.