论文标题

非热的哈密顿量超出时间依赖性SU(1,1)和SU(2)系统的PT对称性 - 伪不变理论中的精确解决方案和几何阶段

Non-Hermitian Hamiltonian beyond PT-symmetry for time-dependant SU(1,1) and SU(2) systems -- exact solution and geometric phase in pseudo-invariant theory

论文作者

Amaouche, Nadjat, Sekhri, Maroua, Zerimeche, Rahma, Mustapha, Maamache, Liang, J. -Q.

论文摘要

我们在本文中调查了时间依赖性的非汉密尔顿人,分别由SU(1,1)和SU(2)发电机组成。前汉密尔顿人是对称的,但后者不是。提出了一个时间依赖性的非独立运算符来构建非炎症的不变式,该算法被验证为带有真实特征值的伪 - 温米。确切的解决方案是根据SU(1,1)和SU(2)系统以统一的方式来获得伪 - 温米不变算子的特征状态的。然后,我们得出LR相,可以将其分离为动态相和几何相。分析结果与文献中相应的Hermitian Hamiltonians的结果完全一致。

We investigate in this paper time-dependent non-Hermitian Hamiltonians, which consist respectively of SU(1,1) and SU(2) generators. The former Hamiltonian is PT symmetric but the latter one is not. A time-dependent non-unitary operator is proposed to construct the non-Hermitian invariant, which is verified as pseudo-Hermitian with real eigenvalues. The exact solutions are obtained in terms of the eigenstates of the pseudo-Hermitian invariant operator for both the SU(1,1)and SU(2)systems in a unified manner. Then, we derive the LR phase, which can be separated to the dynamic phase and the geometrical phase. The analytical results are exactly in agreement with those of corresponding Hermitian Hamiltonians in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源