论文标题
使用相田模型的不均匀裂缝韧性的逆问题
Inverse problems of inhomogeneous fracture toughness using phase-field models
论文作者
论文摘要
我们提出了使用相位模型的裂纹传播的逆问题。首先,我们研究了不均匀介质的裂纹传播,其中骨折韧性在空间上有所不同。使用基于不同表面能量功能的两个相位模型,我们对裂纹传播进行模拟,并表明$ j $ intergemal反映了有效的不均匀韧性。然后,我们制定回归问题,以估计裂纹路径中依赖空间的断裂韧性。我们的方法成功地估算了更艰难区域的位置和幅度。我们还证明了我们的方法可用于不同的不均匀性几何形状。
We propose inverse problems of crack propagation using the phase-field models. First, we study the crack propagation in an inhomogeneous media in which fracture toughness varies in space. Using the two phase-field models based on different surface energy functionals, we perform simulations of the crack propagation and show that the $J$-integral reflects the effective inhomogeneous toughness. Then, we formulate regression problems to estimate space-dependent fracture toughness from the crack path. Our method successfully estimates the positions and magnitude of tougher regions. We also demonstrate that our method works for different geometry of inhomogeneity.