论文标题

虚拟链接的同源箭头多项式

The homological arrow polynomial for virtual links

论文作者

Miller, Kyle A.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The arrow polynomial is an invariant of framed oriented virtual links that generalizes the virtual Kauffman bracket. In this paper we define the homological arrow polynomial, which generalizes the arrow polynomial to framed oriented virtual links with labeled components. The key observation is that, given a link in a thickened surface, the homology class of the link defines a functional on the surface's skein module, and by applying it to the image of the link in the skein module this gives a virtual link invariant. We give a graphical calculus for the homological arrow polynomial by taking the usual diagrams for the Kauffman bracket and including labeled "whiskers" that record intersection numbers with each labeled component of the link. We use the homological arrow polynomial to study $(\mathbb{Z}/n\mathbb{Z})$-nullhomologous virtual links and checkerboard colorability, giving a new way to complete Imabeppu's characterization of checkerboard colorability of virtual links with up to four crossings. We also prove a version of the Kauffman-Murasugi-Thistlethwaite theorem that the breadth of an evaluation of the homological arrow polynomial for an "h-reduced" diagram $D$ is $4(c(D)-g(D)+1)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源