论文标题

R软件包BHH:高维数据的快速,可扩展的贝叶斯分层添加剂模型

The R Package BHAM: Fast and Scalable Bayesian Hierarchical Additive Model for High-dimensional Data

论文作者

Guo, Boyi, Yi, Nengjun

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

BHAM is a freely avaible R pakcage that implments Bayesian hierarchical additive models for high-dimensional clinical and genomic data. The package includes functions that generalized additive model, and Cox additive model with the spike-and-slab LASSO prior. These functions implement scalable and stable algorithms to estimate parameters. BHAM also provides utility functions to construct additive models in high dimensional settings, select optimal models, summarize bi-level variable selection results, and visualize nonlinear effects. The package can facilitate flexible modeling of large-scale molecular data, i.e. detecting susceptible variables and infering disease diagnostic and prognostic. In this article, we describe the models, algorithms and related features implemented in BHAM. The package is freely available via the public GitHub repository https://github.com/boyiguo1/BHAM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源