论文标题

置换量,蜿蜒和SLE装饰的liouville量子重力

Permutons, meanders, and SLE-decorated Liouville quantum gravity

论文作者

Borga, Jacopo, Gwynne, Ewain, Sun, Xin

论文摘要

我们研究一类随机置换子,可以从一对填充空间的Schramm-loewner进化(SLE)曲线构建,该曲线在Liouville量子重力(LQG)表面上构建。该类包括Borga(2021)引入的偏度布朗置换量,其中描述了各种类型的避免随机模式的置换的缩放限制。我们班上的另一个有趣的Permuton是曲折置换量,它对应于$γ$ -LQG表面上的两个独立的SLE $ _8 $曲线,带有$γ= \ sqrt {\ frac13 \ left(17 - \ sqrt {145} {145} \ right)} $。在Di Francesco,Golinelli和Guitter(2000)的工作的基础上,我们猜想曲妥的定位量描述了均匀的弯曲排列的缩放限制,即,在平面中简单循环引起的置换量,该平面上的简单循环超过了一行一行A指定的次数。 我们表明,对于任何随机排列的序列,这些序列会收敛到上述随机置换子之一,最长增加的子序列的长度是sublerear。这证明,最长增加的子序列的长度对于百特,坚固的绑定者和半百车排列是sublinear,并且导致猜想对于曲折排列也是如此。我们还证明,我们同类中每个随机定位的封闭支持具有Hausdorff维度。最后,我们证明了Reundric Permuton的重新根源不变属性,并在LQG相关函数(明确已知)和SLE $ _8 $命中给定的一组点(未知明确的点)方面写下了其预期模式密度的公式(明确已知)。我们以开放问题的清单结束。

We study a class of random permutons which can be constructed from a pair of space-filling Schramm-Loewner evolution (SLE) curves on a Liouville quantum gravity (LQG) surface. This class includes the skew Brownian permutons introduced by Borga (2021), which describe the scaling limit of various types of random pattern-avoiding permutations. Another interesting permuton in our class is the meandric permuton, which corresponds to two independent SLE$_8$ curves on a $γ$-LQG surface with $γ= \sqrt{\frac13 \left( 17 - \sqrt{145} \right)}$. Building on work by Di Francesco, Golinelli, and Guitter (2000), we conjecture that the meandric permuton describes the scaling limit of uniform meandric permutations, i.e., the permutations induced by a simple loop in the plane which crosses a line a specified number of times. We show that for any sequence of random permutations which converges to one of the above random permutons, the length of the longest increasing subsequence is sublinear. This proves that the length of the longest increasing subsequence is sublinear for Baxter, strong-Baxter, and semi-Baxter permutations and leads to the conjecture that the same is true for meandric permutations. We also prove that the closed support of each of the random permutons in our class has Hausdorff dimension one. Finally, we prove a re-rooting invariance property for the meandric permuton and write down a formula for its expected pattern densities in terms of LQG correlation functions (which are known explicitly) and the probability that an SLE$_8$ hits a given set of points in numerical order (which is not known explicitly). We conclude with a list of open problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源