论文标题
各向异性Tolman V解决方案通过$ f(r,t^{2})$ dragity在$ f(r,t^{2})中进行解耦。
Anisotropic Tolman V Solutions by Decoupling Approach in $f(R,T^{2})$ Gravity
论文作者
论文摘要
本文调查了通过在$ f(r,t^{2})$ vertity($ t^{2} = t_ {ζν} = t_ {ζν} t^t^{t^{q {ζν} $,$ r $ ricci calm clicci callim和ric clicci callim ricci callim的框架中,通过在$ f(r,t^{2})$ fripity(r,t^{2})框架中使用最小的几何变形而构建的各向异性静态球的行为是张量)。我们考虑一个带有两个来源的球形设置:种子和其他。假定种子源是各向同性的,而新来源负责诱导各向异性。我们将$ g_ {rr} $组件变形以将字段方程式分为两组。第一个数组对应于各向同性解,而第二组包含各向异性源的效果。与各向同性源相关的系统取决于Tolman V解决方案的度量势,而第二组的三个解决方案则是对应于三个不同约束的三个解决方案。通过使用PSR J1614-2230星的半径和质量,通过能量条件检查所有溶液的物理可接受性。我们还检查了所获得的溶液的稳定性,质量,紧凑性和红移。我们得出的结论是,前两种解决方案仅针对脱钩参数的小值满足可行性和稳定性标准,而第三个解决方案对于其所有可能的值都稳定。
This paper investigates the behavior of anisotropic static spheres that are constructed by employing a minimal geometric deformation in the framework of $f(R,T^{2})$ gravity ($T^{2}=T_{ζν}T^{ζν}$, $R$ is the Ricci scalar and $T_{ζν}$ is the energy-momentum tensor). We consider a spherical setup with two sources: seed and additional. It is assumed that the seed source is isotropic whereas the new source is responsible for inducing anisotropy. We deform the $g_{rr}$ component to split the field equations into two sets. The first array corresponds to the isotropic solution whereas the second set contains the effect of the anisotropic source. The system related to isotropic source is determined by the metric potentials of Tolman V solution while three solutions of the second set are constructed corresponding to three different constraints. The physical acceptability of all solutions is checked through energy conditions by employing the radius and mass of PSR J1614-2230 star. We also examine the stability, mass, compactness and redshift of the obtained solutions. We conclude that first two solutions satisfy the viability and stability criteria only for small values of the decoupling parameter while third solution is stable for its all possible values.