论文标题

缓慢合并的解剖:解剖Ligo/处女座重力波源的世俗驱动的灵感

Anatomy of a slow merger: dissecting secularly-driven inspirals of LIGO/Virgo gravitational wave sources

论文作者

Hamilton, Chris, Rafikov, Roman R.

论文摘要

LIGO/处女座检测到的数十个紧凑型物体合并提出了一个关键的理论问题:最初的较宽的二进制方法如何迅速缩小,以便能够在哈勃时间内通过引力波(GW)辐射合并?一种有希望的答案涉及通过某些外部潮汐扰动的世俗驾驶二进制偏心率。由于存在第三点质量质量,因此可能会出现这种扰动,在这种情况下,系统表现出Lidov-Kozai(LK)动力学,也可能源于二进制轨道的恒星群集的潮汐场。尽管在没有GW发射的情况下,已经对这些世俗潮汐驱动的机制进行了详尽的研究,但是当包括GWS时,动态行为仍未完全理解。在本文中,我们考虑通过高偏心性激发驱动为合并的紧凑型物体二进制物(双重散热,测试粒子四极级)簇潮汐(包括LK驱动的合并)是一种特殊情况 - 并包括一般相对论预动力和GW发射的效果。我们首次提供对二进制半轴轴,世俗振荡时间尺度和相空间结构的不同进化阶段的分析理解。我们的结果将为未来的人口综合计算,从分层和恒星群集中的紧凑型物体二进制合并计算。

The dozens of compact object mergers detected by LIGO/Virgo raise a key theoretical question: how do initially wide binaries shrink sufficiently quickly that they are able to merge via gravitational wave (GW) radiation within a Hubble time? One promising class of answers involves secular driving of binary eccentricity by some external tidal perturbation. This perturbation can arise due to the presence of a tertiary point mass, in which case the system exhibits Lidov-Kozai (LK) dynamics, or it can stem from the tidal field of the stellar cluster in which the binary orbits. While these secular tide-driven mechanisms have been studied exhaustively in the case of no GW emission, when GWs are included the dynamical behavior is still incompletely understood. In this paper we consider compact object binaries driven to merger via high eccentricity excitation by (doubly-averaged, test-particle quadrupole level) cluster tides - which includes LK-driven mergers as a special case - and include the effects of both general relativistic precession and GW emission. We provide for the first time an analytical understanding of the different evolutionary stages of the binary's semimajor axis, secular oscillation timescale, and phase space structure all the way to merger. Our results will inform future population synthesis calculations of compact object binary mergers from hierarchical triples and stellar clusters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源