论文标题

在$ ϕ $ - $δ$ - s-s-s-s-primary tomutative戒指中

On $ϕ$-$δ$-S-primary ideals of commutative rings

论文作者

Jaber, Ameer

论文摘要

令$ r $为unity $(1 \ not = 0)$的交换戒指,让$ \ mathfrak {j}(r)$是$ r $的所有理想的集合。令$ ϕ:\ mathfrak {j}(r)\ rightarrow \ mathfrak {j}(r)\ cup \ {\ emptySet \} $是$ r $的理想的减少函数,让$Δ:\ mathfrak {j}(j}(j}(j}(r)我们记得,适当的理想$ i $ $ r $称为$ ϕ $ - $δ$ - $ r $的$ r $的理想,如果$ a,b $ in r $ in r $ in r $ in r $ in r $ in i-ϕ(i)$,则是$ a \ in i $或$ a \ in i $或$ b \inΔ(i)$。在本文中,我们介绍了一种新的理想类别,这是对$ ϕ $ - $δ$ - 主要理想的类别的概括。令$ s $为$ r $的多重子集,使得$ 1 \ in s $,而$ i $是$ r $的适当理想,带有$ s \ cap i = \ emptySet $,然后$ i $被称为$ n $ - $ n $ - $Δ$ - $Δ$ - $ s $ - $ s $ s $ - $ r $ in $ s $ in $ s $ in $ a $ a,n e a $ a,b f \ in a b \ in b \ in b \ in a b \ in $ sa \ in I $或$ sb \inδ(i)$。在本文中,我们提出了一系列不同的示例,属性,这一新的理想类别的特征。

Let $R$ be a commutative ring with unity $(1\not=0)$ and let $\mathfrak{J}(R)$ be the set of all ideals of $R$. Let $ϕ:\mathfrak{J}(R)\rightarrow\mathfrak{J}(R)\cup\{\emptyset\}$ be a reduction function of ideals of $R$ and let $δ:\mathfrak{J}(R)\rightarrow\mathfrak{J}(R)$ be an expansion function of ideals of $R$. We recall that a proper ideal $I$ of $R$ is called a $ϕ$-$δ$-primary ideal of $R$ if whenever $a,b\in R$ and $ab\in I-ϕ(I)$, then $a\in I$ or $b\inδ(I)$. In this paper, we introduce a new class of ideals that is a generalization to the class of $ϕ$-$δ$-primary ideals. Let $S$ be a multiplicative subset of $R$ such that $1\in S$ and let $I$ be a proper ideal of $R$ with $S\cap I=\emptyset$, then $I$ is called a $ϕ$-$δ$-$S$-primary ideal of $R$ associated to $s\in S$ if whenever $a,b\in R$ and $ab\in I-ϕ(I)$, then $sa\in I$ or $sb\inδ(I)$. In this paper, we have presented a range of different examples, properties, characterizations of this new class of ideals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源