论文标题

非热门系统中真实特征值的级别统计数据

Level statistics of real eigenvalues in non-Hermitian systems

论文作者

Xiao, Zhenyu, Kawabata, Kohei, Luo, Xunlong, Ohtsuki, Tomi, Shindou, Ryuichi

论文摘要

与复杂的共轭和遗传性共轭相关的对称性,例如时间逆向对称性和伪 - 热性,对非硫磺随机矩阵的特征值光谱具有很大的影响。在这里,我们表明,时间反转对称性和伪热性导致了实际轴和周围非热矩阵的普遍水平统计。从大型随机矩阵的广泛数值计算中,我们获得了真实特征值的五个通用级别间距和级别间距比分布,每个分布都是对称类别所独有的。此外,我们分析了物理模型中实际特征值的间距,例如骨器多体系统和具有障碍和耗散的免费费米子系统。我们澄清说,在同一对称类别中,非弱者随机矩阵的普遍分布描述了沿着梯形(金属)阶段的水平间距,而多体局部和安德森局部化相位的水平间距显示了泊松统计。我们还发现,在这些对称类别中,实际特征值的数量显示了沿牙等阶段的不同尺度。这些结果是检测量子混乱,多体定位以及在具有对称性的非武术系统中的实际复合过渡的有效工具。

Symmetries associated with complex conjugation and Hermitian conjugation, such as time-reversal symmetry and pseudo-Hermiticity, have great impact on eigenvalue spectra of non-Hermitian random matrices. Here, we show that time-reversal symmetry and pseudo-Hermiticity lead to universal level statistics of non-Hermitian random matrices on and around the real axis. From the extensive numerical calculations of large random matrices, we obtain the five universal level-spacing and level-spacing-ratio distributions of real eigenvalues, each of which is unique to the symmetry class. Furthermore, we analyse spacings of real eigenvalues in physical models, such as bosonic many-body systems and free fermionic systems with disorder and dissipation. We clarify that the level spacings in ergodic (metallic) phases are described by the universal distributions of non-Hermitian random matrices in the same symmetry classes, while the level spacings in many-body localized and Anderson localized phases show the Poisson statistics. We also find that the number of real eigenvalues shows distinct scalings in the ergodic and localized phases in these symmetry classes. These results serve as effective tools for detecting quantum chaos, many-body localization, and real-complex transitions in non-Hermitian systems with symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源