论文标题
使用髋关节磨损加速度计的久坐行为估计数据:分割,分类和阈值
Sedentary Behavior Estimation with Hip-worn Accelerometer Data: Segmentation, Classification and Thresholding
论文作者
论文摘要
队列研究越来越多地使用加速度计进行体育活动和久坐行为估计。这些设备往往比自我报告易于错误,可以全天捕获活动,并且是经济的。但是,在自由生活的情况下和受试者对受试者的变化下,以前基于髋关节数据估算久坐行为的方法通常是无效的或次优的。在本文中,我们提出了一个本地马尔可夫切换模型,该模型考虑了这种情况,并引入了一种姿势分类和久坐行为分析的一般程序,该程序自然适合该模型。我们的方法在时间序列中具有更改点检测方法,也是一个两个阶段分类步骤,将数据标记为3类(坐着,站立,步进)。通过严格的训练测试范例,我们表明我们的方法的准确性> 80%。此外,我们的方法是强大的,易于解释。
Cohort studies are increasingly using accelerometers for physical activity and sedentary behavior estimation. These devices tend to be less error-prone than self-report, can capture activity throughout the day, and are economical. However, previous methods for estimating sedentary behavior based on hip-worn data are often invalid or suboptimal under free-living situations and subject-to-subject variation. In this paper, we propose a local Markov switching model that takes this situation into account, and introduce a general procedure for posture classification and sedentary behavior analysis that fits the model naturally. Our method features changepoint detection methods in time series and also a two stage classification step that labels data into 3 classes(sitting, standing, stepping). Through a rigorous training-testing paradigm, we showed that our approach achieves > 80% accuracy. In addition, our method is robust and easy to interpret.