论文标题

犯罪现场分类来自监视环境中的骨骼轨迹分析

Crime scene classification from skeletal trajectory analysis in surveillance settings

论文作者

Matei, Alina-Daniela, Talavera, Estefania, Aghaei, Maya

论文摘要

视频异常分析是在计算机视觉领域积极执行的核心任务,应用程序扩展到了监视录像中现实世界中的犯罪检测。在这项工作中,我们解决了与人有关的犯罪分类的任务。在我们提出的方法中,用作骨骼关节轨迹的视频框架中的人体被用作探索的主要来源。首先,我们介绍了扩展HR-Crime数据集的地面真相标签的意义,因此提出了一种受监督和无监督的方法来生成轨迹级别的地面真相标签。接下来,鉴于轨迹级别的地面真相的可用性,我们引入了基于轨迹的犯罪分类框架。消融研究是通过各种体系结构和特征融合策略来代表人类轨迹进行的。进行的实验证明了任务的可行性,并为该领域的进一步研究铺平了道路。

Video anomaly analysis is a core task actively pursued in the field of computer vision, with applications extending to real-world crime detection in surveillance footage. In this work, we address the task of human-related crime classification. In our proposed approach, the human body in video frames, represented as skeletal joints trajectories, is used as the main source of exploration. First, we introduce the significance of extending the ground truth labels for HR-Crime dataset and hence, propose a supervised and unsupervised methodology to generate trajectory-level ground truth labels. Next, given the availability of the trajectory-level ground truth, we introduce a trajectory-based crime classification framework. Ablation studies are conducted with various architectures and feature fusion strategies for the representation of the human trajectories. The conducted experiments demonstrate the feasibility of the task and pave the path for further research in the field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源