论文标题
重言式束的欧拉特征在引用曲线方案上
Euler characteristics of tautological bundles over Quot schemes of curves
论文作者
论文摘要
我们计算重言式矢量束的欧拉特征及其在曲线引用方案上的外部力量。我们在所有属中给出封闭式的表达式。对于琐碎矢量束的较高等级的商,我们获得了零属的答案。我们还研究了重言式束的对称能力的欧拉特征,用于等级零商。
We compute the Euler characteristics of tautological vector bundles and their exterior powers over the Quot schemes of curves. We give closed-form expressions over punctual Quot schemes in all genera. For higher rank quotients of a trivial vector bundle, we obtain answers in genus zero. We also study the Euler characteristics of the symmetric powers of the tautological bundles, for rank zero quotients.