论文标题

使用基于语言模型的深度学习方法的准确RNA 3D结构预测

Accurate RNA 3D structure prediction using a language model-based deep learning approach

论文作者

Shen, Tao, Hu, Zhihang, Sun, Siqi, Liu, Di, Wong, Felix, Wang, Jiuming, Chen, Jiayang, Wang, Yixuan, Hong, Liang, Xiao, Jin, Zheng, Liangzhen, Krishnamoorthi, Tejas, King, Irwin, Wang, Sheng, Yin, Peng, Collins, James J., Li, Yu

论文摘要

RNA三维(3D)结构的准确预测仍然是未解决的挑战。确定RNA 3D结构对于理解其功能并告知涉及RNA的药物开发和合成生物学设计至关重要。 RNA的结构灵活性导致实验确定的数据缺乏,使计算预测工作变得复杂。在这里,我们提出了Rhofold+,这是一种基于RNA语言模型的深度学习方法,可准确预测序列中单链RNA的3D结构。通过集成在约2370万个RNA序列和利用技术以解决数据稀缺技术的RNA语言模型,Rhofold+为RNA 3D结构预测提供了完全自动化的端到端管道。对RNA-Puzzles和CASP15天然RNA靶标的回顾性评估表明,Rhofold+的优势比包括人类专家组在内的现有方法。通过跨家族和跨类型评估以及时间审查的基准,它的功效和概括性得到了进一步验证。此外,Rhofold+预测RNA二级结构和螺旋间角,提供了经验可验证的特征,可扩大其对RNA结构和功能研究的适用性。

Accurate prediction of RNA three-dimensional (3D) structure remains an unsolved challenge. Determining RNA 3D structures is crucial for understanding their functions and informing RNA-targeting drug development and synthetic biology design. The structural flexibility of RNA, which leads to scarcity of experimentally determined data, complicates computational prediction efforts. Here, we present RhoFold+, an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences. By integrating an RNA language model pre-trained on ~23.7 million RNA sequences and leveraging techniques to address data scarcity, RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction. Retrospective evaluations on RNA-Puzzles and CASP15 natural RNA targets demonstrate RhoFold+'s superiority over existing methods, including human expert groups. Its efficacy and generalizability are further validated through cross-family and cross-type assessments, as well as time-censored benchmarks. Additionally, RhoFold+ predicts RNA secondary structures and inter-helical angles, providing empirically verifiable features that broaden its applicability to RNA structure and function studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源