论文标题
hipe:姿势图的分层初始化
HiPE: Hierarchical Initialization for Pose Graphs
论文作者
论文摘要
姿势图优化是在许多机器人感知领域遇到的非凸优化问题。它的收敛到准确的解决方案由两个因素来调节:使用成本函数的非线性和姿势变量的初始配置。在本文中,我们提出了Hipe,这是一种用于姿势图初始化的新型层次结构算法。我们的方法利用了一个粗粒图,该图编码了问题几何形状的抽象表示。我们通过结合来自输入本地区域的最大似然估计来构建此图。通过利用这种表示的稀疏性,我们可以以非线性方式初始化姿势图,而无需与现有方法相比,没有计算开销。最初的初始猜测可以有效地引导用于获得最终解决方案的细粒优化。此外,我们对不同成本函数对最终估计的影响进行了经验分析。我们的实验评估表明,HIPE的使用导致更有效,更健壮的优化过程,与最先进的方法相比。
Pose graph optimization is a non-convex optimization problem encountered in many areas of robotics perception. Its convergence to an accurate solution is conditioned by two factors: the non-linearity of the cost function in use and the initial configuration of the pose variables. In this paper, we present HiPE, a novel hierarchical algorithm for pose graph initialization. Our approach exploits a coarse-grained graph that encodes an abstract representation of the problem geometry. We construct this graph by combining maximum likelihood estimates coming from local regions of the input. By leveraging the sparsity of this representation, we can initialize the pose graph in a non-linear fashion, without computational overhead compared to existing methods. The resulting initial guess can effectively bootstrap the fine-grained optimization that is used to obtain the final solution. In addition, we perform an empirical analysis on the impact of different cost functions on the final estimate. Our experimental evaluation shows that the usage of HiPE leads to a more efficient and robust optimization process, comparing favorably with state-of-the-art methods.