论文标题
动态金茨堡 - Landau方程的有效迭代方法
An efficient iterative method for dynamical Ginzburg-Landau equations
论文作者
论文摘要
在本文中,我们提出了一种新的有限元方法,以模拟时间表下的时间依赖性的金茨堡 - 兰道方程,并为由此产生的离散系统的牛顿迭代设计有效的预处理。新方法通过第二种Nedelec元素的最低顺序求解H(卷曲)空间中的磁电势。这种方法提供了一种处理边界条件的简单方法,并在与超导型的超导体打交道时会导致稳定且可靠的性能。数值模拟中的比较验证了提出的预处理的效率,这可以显着加快大规模计算中的模拟。
In this paper, we propose a new finite element approach to simulate the time-dependent Ginzburg-Landau equations under the temporal gauge, and design an efficient preconditioner for the Newton iteration of the resulting discrete system. The new approach solves the magnetic potential in H(curl) space by the lowest order of the second kind Nedelec element. This approach offers a simple way to deal with the boundary condition, and leads to a stable and reliable performance when dealing with the superconductor with reentrant corners. The comparison in numerical simulations verifies the efficiency of the proposed preconditioner, which can significantly speed up the simulation in large-scale computations.