论文标题
Fakenews:基于GAN的现实3D体积数据 - 系统的审查和分类学
FakeNews: GAN-based generation of realistic 3D volumetric data -- A systematic review and taxonomy
论文作者
论文摘要
随着数据驱动算法的大量扩散,例如基于深度学习的方法,高质量数据的可用性引起了极大的兴趣。体积数据在医学中非常重要,因为它范围从疾病诊断到治疗监测。如果数据集足够,则可以培训模型来帮助医生完成这些任务。不幸的是,在某些情况下,大量数据无法使用。例如,罕见的疾病和隐私问题可能导致数据可用性受到限制。在非医学领域,获得足够的高质量数据的高成本也可能引起人们的关注。解决这些问题的解决方案可以是使用生成对抗网络(GAN)生成逼真的合成数据。这些机制的存在是一项很好的资产,尤其是在医疗保健中,因为数据必须具有良好的质量,现实,并且没有隐私问题。因此,大多数有关体积甘斯的出版物都在医疗领域内。在这篇综述中,我们提供了使用gan生成现实的体积合成数据的作品的摘要。因此,我们在这些领域中概述了具有共同体系结构,损失功能和评估指标的基于GAN的方法,包括其优势和缺点。我们提出了一种新颖的分类学,评估,挑战和研究机会,以提供当前体积gan的整体概述。
With the massive proliferation of data-driven algorithms, such as deep learning-based approaches, the availability of high-quality data is of great interest. Volumetric data is very important in medicine, as it ranges from disease diagnoses to therapy monitoring. When the dataset is sufficient, models can be trained to help doctors with these tasks. Unfortunately, there are scenarios where large amounts of data is unavailable. For example, rare diseases and privacy issues can lead to restricted data availability. In non-medical fields, the high cost of obtaining enough high-quality data can also be a concern. A solution to these problems can be the generation of realistic synthetic data using Generative Adversarial Networks (GANs). The existence of these mechanisms is a good asset, especially in healthcare, as the data must be of good quality, realistic, and without privacy issues. Therefore, most of the publications on volumetric GANs are within the medical domain. In this review, we provide a summary of works that generate realistic volumetric synthetic data using GANs. We therefore outline GAN-based methods in these areas with common architectures, loss functions and evaluation metrics, including their advantages and disadvantages. We present a novel taxonomy, evaluations, challenges, and research opportunities to provide a holistic overview of the current state of volumetric GANs.