论文标题

用于研究多模式量子系统动力学的代数方法

Algebraic approach for investigation of a multi-mode quantum system dynamics

论文作者

Gaidash, Andrei, Kozubov, Anton, Kiselev, Alexei, Miroshnichenko, George

论文摘要

我们引入了代数方法,用于超级操作器,这可能是研究量子(玻感)多模式系统及其动力学的有用工具。为了证明所提出的方法的潜力,我们考虑了描述量子系统的松弛动力学的多模式Liouvillian超级操作器(包括热化和模式耦合)。被认为是形成liouvillian及其代数特性的超级操作器的代数结构,使我们能够对角线将多模式liouvillian对角线找到其频谱。此外,它允许通过平均数量的热(环境)光子光子近似来得出时间进化超级操纵器,以使Fock空间有限(假设尺寸有限的初始量)中保持数量的考虑尺寸,这可能对纠缠动态问题有帮助。也考虑了共轭liouvillian,以便在海森伯格图片中进行分析,可以为多时间相关函数推导实现。

We introduce algebraic approach for superoperators that might be useful tool for investigation of quantum (bosonic) multi-mode systems and its dynamics. In order to demonstrate potential of proposed method we consider multi-mode Liouvillian superoperator that describes relaxation dynamics of a quantum system (including thermalization and intermode coupling). Considered algebraic structure of superoperators that form Liouvillian and their algebraic properties allows us to diagonilize multi-mode Liouvillian to find its spectrum. Also it allows to derive linear by mean number of thermal (environmental) photons approximation for time-evolution superoperator that keeps amount of considered dimensions in Fock space finite (assuming initial amount of dimensions finite) that might be helpful regarding entanglement dynamics problems. Conjugate Liouvillian is considered as well in order to perform analysis in Heisenberg picture, it can be implemented for multi-time correlation functions derivation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源