论文标题
FastKötter-Nielsen-Høholdt插值,偏斜多项式环及其在编码理论中的应用
Fast Kötter-Nielsen-Høholdt Interpolation over Skew Polynomial Rings and its Application in Coding Theory
论文作者
论文摘要
偏差多项式是一类非交通性多项式,在计算机科学,编码理论和密码学中具有多个应用。特别是,偏斜多项式可用于构建和解码几个指标的评估代码,例如锤子,等级,总和和偏斜度量。我们提出了Kötter-nielsen-Høholdt(KNH)插值算法的快速分裂和争议变体:它在偏度多项式载体上输入了线性函数列表,并输出了核相交的降低的Gröbner基础。我们表明,提出的KNH插值可用于求解基于插值的插值步骤,该插值在排行机中的插入式gabidulin代码的解码在等级 - 线性的,线性化的芦苇 - 固体代码中,在总和公制和偏心的skew sekew skew skew metric中,$ \ tilde($ \ tilde)在$ \ mathbb {f} _ {q^m} $中,其中$ n $是代码的长度,$ s $中断订单,$ m(n)$,在最多$ n $,$ n $,$ω$的$ω$ y rix yrix乘法的$ \ tilde $ flodiont $ \ tillilect od of pofter的$ n $ forply plyenmials的复杂性中因素。这与这些任务的先前最佳速度相匹配,这些速度是通过自上而下的近似基础技术获得的,并通过自下而上的KNH方法补充了自由偏斜多项式模块的有效插值理论。与自上而下的方法相反,自下而上的KNH算法对插值点没有要求,因此不需要任何预处理。
Skew polynomials are a class of non-commutative polynomials that have several applications in computer science, coding theory and cryptography. In particular, skew polynomials can be used to construct and decode evaluation codes in several metrics, like e.g. the Hamming, rank, sum-rank and skew metric. We propose a fast divide-and-conquer variant of Kötter-Nielsen-Høholdt (KNH) interpolation algorithm: it inputs a list of linear functionals on skew polynomial vectors, and outputs a reduced Gröbner basis of their kernel intersection. We show, that the proposed KNH interpolation can be used to solve the interpolation step of interpolation-based decoding of interleaved Gabidulin codes in the rank-metric, linearized Reed-Solomon codes in the sum-rank metric and skew Reed-Solomon codes in the skew metric requiring at most $\tilde{O}(s^ω M(n))$ operations in $\mathbb{F}_{q^m}$ , where $n$ is the length of the code, $s$ the interleaving order, $M(n)$ the complexity for multiplying two skew polynomials of degree at most $n$, $ω$ the matrix multiplication exponent and $\tilde{O}(\cdot)$ the soft-O notation which neglects log factors. This matches the previous best speeds for these tasks, which were obtained by top-down minimal approximant bases techniques, and complements the theory of efficient interpolation over free skew polynomial modules by the bottom-up KNH approach. In contrast to the top-down approach the bottom-up KNH algorithm has no requirements on the interpolation points and thus does not require any pre-processing.