论文标题
在真实封闭场上的代数品种的简单同义理论,第1部分
Simplicial homotopy theory of algebraic varieties over real closed fields, Part 1
论文作者
论文摘要
我们研究了在真实封闭场上定义的代数品种的连续半代数单纯形的简单类型的同型类型,我们将其称为实际同型类型。我们证明了Artin-Mazur定理的类似物,将真实同质类型与典型同型类型进行了比较。本文是有关此主题的一系列论文的一部分。
We study the homotopy type of the simplicial set of continuous semi-algebraic simplexes of an algebraic variety defined over a real closed field, which we will call the real homotopy type. We prove an analogue of the theorem of Artin-Mazur comparing the real homotopy type with the étale homotopy type. This paper is part one of a sequence of papers on this topic.