论文标题

弗洛纳斯:神经建筑搜索光流估计

FlowNAS: Neural Architecture Search for Optical Flow Estimation

论文作者

Lin, Zhiwei, Liang, Tingting, Xiao, Taihong, Wang, Yongtao, Tang, Zhi, Yang, Ming-Hsuan

论文摘要

现有的光流估计器通常采用通常为图像分类设计的网络体系结构作为提取人均功能的编码器。但是,由于任务之间的自然差异,用于图像分类的架构可能是最佳的流量估计。为了解决此问题,我们建议一种名为Falownas的神经体系结构搜索方法,以自动找到用于流估计任务的更好的编码器体系结构。我们首先设计了一个合适的搜索空间,包括各种卷积操作员,并构建一个体重共享的超级网络,以有效评估候选体系结构。然后,为了更好地训练超级网络,我们提出了特征对齐蒸馏,该蒸馏利用训练有素的流量估计器来指导超级网络的训练。最后,利用资源约束的进化算法找到最佳体系结构(即子网络)。实验结果表明,从超级网络继承的权重的发现的结构达到了4.67 \%f1-f1-able a kitti上的误差,8.4 \%\%的筏基线减少,超过了先进的手工制作的模型GMA和AGFLOW,同时降低了模型的复杂性和延迟。源代码和训练有素的模型将在https://github.com/vdigpku/flownas中发布。

Existing optical flow estimators usually employ the network architectures typically designed for image classification as the encoder to extract per-pixel features. However, due to the natural difference between the tasks, the architectures designed for image classification may be sub-optimal for flow estimation. To address this issue, we propose a neural architecture search method named FlowNAS to automatically find the better encoder architecture for flow estimation task. We first design a suitable search space including various convolutional operators and construct a weight-sharing super-network for efficiently evaluating the candidate architectures. Then, for better training the super-network, we propose Feature Alignment Distillation, which utilizes a well-trained flow estimator to guide the training of super-network. Finally, a resource-constrained evolutionary algorithm is exploited to find an optimal architecture (i.e., sub-network). Experimental results show that the discovered architecture with the weights inherited from the super-network achieves 4.67\% F1-all error on KITTI, an 8.4\% reduction of RAFT baseline, surpassing state-of-the-art handcrafted models GMA and AGFlow, while reducing the model complexity and latency. The source code and trained models will be released in https://github.com/VDIGPKU/FlowNAS.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源