论文标题
域自适应核实例分割和分类通过类别感知特征对齐和伪标记
Domain Adaptive Nuclei Instance Segmentation and Classification via Category-aware Feature Alignment and Pseudo-labelling
论文作者
论文摘要
无监督的域适应性(UDA)方法已广泛用于提高模型在一般计算机视觉中的适应能力。然而,与自然图像不同,在组织病理学图像中不同类别的核存在巨大的语义差距。它仍未探索,我们如何构建通用的UDA模型,以精确的分割或对不同数据集的核实例进行分类。在这项工作中,我们提出了一个新颖的深神经网络,即用于UDA核实例分割和分类的类别感知特征对齐和伪标记网络(CAPL-NET)。具体而言,我们首先提出一个具有动态可学习权衡权重的类别级特征对齐模块。其次,我们建议通过基于核级原型特征的伪标签,通过自我监督的训练来促进目标数据上的模型性能。关于跨域核实例分割和分类任务的综合实验表明,我们的方法优于最先进的UDA方法,其余量显着。
Unsupervised domain adaptation (UDA) methods have been broadly utilized to improve the models' adaptation ability in general computer vision. However, different from the natural images, there exist huge semantic gaps for the nuclei from different categories in histopathology images. It is still under-explored how could we build generalized UDA models for precise segmentation or classification of nuclei instances across different datasets. In this work, we propose a novel deep neural network, namely Category-Aware feature alignment and Pseudo-Labelling Network (CAPL-Net) for UDA nuclei instance segmentation and classification. Specifically, we first propose a category-level feature alignment module with dynamic learnable trade-off weights. Second, we propose to facilitate the model performance on the target data via self-supervised training with pseudo labels based on nuclei-level prototype features. Comprehensive experiments on cross-domain nuclei instance segmentation and classification tasks demonstrate that our approach outperforms state-of-the-art UDA methods with a remarkable margin.