论文标题

CAM/CAD点云部分通过几次学习

CAM/CAD Point Cloud Part Segmentation via Few-Shot Learning

论文作者

Wang, Jiahui, Zhu, Haiyue, Guo, Haoren, Mamun, Abdullah Al, Prahlad, Vadakkepat, Lee, Tong Heng

论文摘要

3D部分分割是高级CAM/CAD工作流程中的重要步骤。精确的3D细分有助于降低制造设备(例如计算机控制的CNC)生产的工作配件的缺陷率,从而提高了工作效率并获得了随之而来的经济利益。在3D模型分割上进行的大量现有作品主要基于完全监督的学习,该学习训练AI模型具有大型,带注释的数据集。但是,缺点在于,完全监督的学习方法中所得的模型高度依赖于可用数据集的完整性,并且其对新未知分段类型的概括能力相对较差(即进一步的其他新颖类)。在这项工作中,我们提出并开发了一种值得注意的基于学习的方法,以在CAM/CAD中进行有效的部分分割;这旨在显着增强其概括能力,并通过仅使用相对较少的样本灵活地适应新的分割任务。结果,它不仅减少了通常无法实现的监督数据集完整性的要求,而且还提高了对现实世界应用程序的灵活性。随着进一步的改进和创新,我们还采用了网络中的转换网和中心损失块。这些特征有助于提高整个工作人员各种可能实例的3D特征的理解,并确保在特征空间中的同一类密切分布。

3D part segmentation is an essential step in advanced CAM/CAD workflow. Precise 3D segmentation contributes to lower defective rate of work-pieces produced by the manufacturing equipment (such as computer controlled CNCs), thereby improving work efficiency and attaining the attendant economic benefits. A large class of existing works on 3D model segmentation are mostly based on fully-supervised learning, which trains the AI models with large, annotated datasets. However, the disadvantage is that the resulting models from the fully-supervised learning methodology are highly reliant on the completeness of the available dataset, and its generalization ability is relatively poor to new unknown segmentation types (i.e. further additional novel classes). In this work, we propose and develop a noteworthy few-shot learning-based approach for effective part segmentation in CAM/CAD; and this is designed to significantly enhance its generalization ability and flexibly adapt to new segmentation tasks by using only relatively rather few samples. As a result, it not only reduces the requirements for the usually unattainable and exhaustive completeness of supervision datasets, but also improves the flexibility for real-world applications. As further improvement and innovation, we additionally adopt the transform net and the center loss block in the network. These characteristics serve to improve the comprehension for 3D features of the various possible instances of the whole work-piece and ensure the close distribution of the same class in feature space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源