论文标题

FPS中的FPS:找到交错超几何序列的显式公式的一种简单方法

FPS In Action: An Easy Way To Find Explicit Formulas For Interlaced Hypergeometric Sequences

论文作者

Tabuguia, Bertrand Teguia, Koepf, Wolfram

论文摘要

具有恒定系数的线性复发方程定义了有理函数的功率序列系数。但是,只要这样的公式就足够简单,通常会更喜欢对系数序列具有明确的公式。简单性与代数数的存在导致公式的紧凑性有关:“较小,较简单”。该海报展示了在Maxima和Maple(Convert/Formur -Powerseries)实施的正式电力系列(FPS)算法最新更新的能力,以查找诸如https://oeis.org/a3077717,https:/https://eoeis.org/a2222222267882的序列的简单公式https://oeis.org/a226784通过计算其正确猜测的生成功能的功率序列表示。我们为单变量$ p $ recursive序列的更一般环境设计了算法。我们的实施可从http://www.mathematik.uni-kassel.de/~bteguia/fps_webpage/fps.htm获得。

Linear recurrence equations with constant coefficients define the power series coefficients of rational functions. However, one usually prefers to have an explicit formula for the sequence of coefficients, provided that such a formula is "simple" enough. Simplicity is related to the compactness of the formula due to the presence of algebraic numbers: "the smaller, the simpler". This poster showcases the capacity of recent updates on the Formal Power Series (FPS) algorithm, implemented in Maxima and Maple (convert/FormalPowerSeries), to find simple formulas for sequences like those from https://oeis.org/A307717, https://oeis.org/A226782, or https://oeis.org/A226784 by computing power series representations of their correctly guessed generating functions. We designed the algorithm for the more general context of univariate $P$-recursive sequences. Our implementations are available at http://www.mathematik.uni-kassel.de/~bteguia/FPS_webpage/FPS.htm

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源