论文标题
在令人反感的费米子$ \ textrm {su}(n)$ Hubbard模型
Spectroscopic evidence for engineered hadron formation in repulsive fermionic $\textrm{SU}(N)$ Hubbard Models
论文作者
论文摘要
粒子的形成代表了物理各个分支中的一个中心主题,通常与限制有关。在这里,我们表明,可以在最具范式和最简单的凝结物理物理学模型的超速原子环境中检测到动态强体的形成,即排斥$ \ textrm {su}(n)$ hubbard模型。从$ {{\ textrm {su}(3)}} $ Hubbard模型的适当工程的初始状态开始,不仅是介子(Doubleons),而且在时间演化期间自然会生成Baryons(Trions)。在强烈相互作用的极限中,巴里子变得沉重并相互吸引,它们与介子的残留相互作用会产生介子扩散,如相等的时间密度相关函数的演变所捕获。长期存在的哈德子仍然存在,而系统则热量为负温度状态。我们的结论扩展到了各种各样的初始条件,所有空间维度以及SU($ n> 2 $)Hubbard模型。
Particle formation represents a central theme in various branches of physics, often associated to confinement. Here we show that dynamical hadron formation can be spectroscopically detected in an ultracold atomic setting within the most paradigmatic and simplest model of condensed matter physics, the repulsive $\textrm{SU}(N)$ Hubbard model. By starting from an appropriately engineered initial state of the ${{\textrm{SU}(3)}}$ Hubbard model, not only mesons (doublons) but also baryons (trions) are naturally generated during the time evolution. In the strongly interacting limit, baryons become heavy and attract each other strongly, and their residual interaction with mesons generates meson diffusion, as captured by the evolution of the equal time density correlation function. Hadrons remain present in the long time limit, while the system thermalizes to a negative temperature state. Our conclusions extend to a large variety of initial conditions, all spatial dimensions, and for SU($N>2$) Hubbard models.