论文标题

叙述:普通的辅助免费视图肖像造型器

NARRATE: A Normal Assisted Free-View Portrait Stylizer

论文作者

Wang, Youjia, Xu, Teng, Wu, Yiwen, Li, Minzhang, Chen, Wenzheng, Xu, Lan, Yu, Jingyi

论文摘要

在这项工作中,我们提出了叙述,这是一种新颖的管道,可以以逼真的方式同时编辑肖像照明和观点。作为一种混合神经形态的面部模型,叙述了几何学感知生成方法和正常辅助物理面部模型的互补益处。简而言之,叙述首先将输入肖像转变为粗糙的几何形状,并采用神经渲染来产生类似于输入的图像,并产生令人信服的姿势变化。但是,反转步骤引入了不匹配,带来了较少面部细节的低质量图像。因此,我们进一步估计师范的肖像,以增强粗糙的几何形状,从而创建高保真的物理面部模型。特别是,我们融合了神经和物理渲染以补偿不完善的反转,从而产生了现实和视图一致的新透视图像。在重新阶段,以前的作品着重于单一视图肖像重新审议,但也忽略了不同观点之间的一致性,引导不稳定和不一致的照明效果以进行视图变化。我们通过将其多视图输入正常地图与物理面模型统一,以解决此问题。叙事通过一致的正常地图进行重新进行重新,施加了跨视图的约束并表现出稳定且连贯的照明效果。我们在实验上证明,叙述在先前的工作中取得了更现实的,可靠的结果。我们进一步使用动画和样式转移工具进行介绍,支持姿势变化,灯光变化,面部动画和样式转移,无论是分别还是组合,都具有摄影质量。我们展示了生动的自由视图面部动画以及3D感知可靠的风格,这些风格有助于促进各种AR/VR应用程序,例如虚拟摄影,3D视频会议和后期制作。

In this work, we propose NARRATE, a novel pipeline that enables simultaneously editing portrait lighting and perspective in a photorealistic manner. As a hybrid neural-physical face model, NARRATE leverages complementary benefits of geometry-aware generative approaches and normal-assisted physical face models. In a nutshell, NARRATE first inverts the input portrait to a coarse geometry and employs neural rendering to generate images resembling the input, as well as producing convincing pose changes. However, inversion step introduces mismatch, bringing low-quality images with less facial details. As such, we further estimate portrait normal to enhance the coarse geometry, creating a high-fidelity physical face model. In particular, we fuse the neural and physical renderings to compensate for the imperfect inversion, resulting in both realistic and view-consistent novel perspective images. In relighting stage, previous works focus on single view portrait relighting but ignoring consistency between different perspectives as well, leading unstable and inconsistent lighting effects for view changes. We extend Total Relighting to fix this problem by unifying its multi-view input normal maps with the physical face model. NARRATE conducts relighting with consistent normal maps, imposing cross-view constraints and exhibiting stable and coherent illumination effects. We experimentally demonstrate that NARRATE achieves more photorealistic, reliable results over prior works. We further bridge NARRATE with animation and style transfer tools, supporting pose change, light change, facial animation, and style transfer, either separately or in combination, all at a photographic quality. We showcase vivid free-view facial animations as well as 3D-aware relightable stylization, which help facilitate various AR/VR applications like virtual cinematography, 3D video conferencing, and post-production.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源