论文标题

显微镜图像中阴道分割的滴虫

Trichomonas Vaginalis Segmentation in Microscope Images

论文作者

Li, Lin, Liu, Jingyi, Wang, Shuo, Wang, Xunkun, Xiang, Tian-Zhu

论文摘要

滴虫病是一种常见的传染病,由寄生虫trichomonas阴道引起高发,如果未治疗,则增加了在人类中艾滋病毒的风险。从微观图像中对阴道的自动检测可以提供至关重要的信息,以诊断毛诺病。然而,由于毛果片和其他细胞之间的高外观相似性(例如白细胞),由于其运动性较大,而且由于缺乏深入模型训练的大规模注释数据,因此,精确的毛毛虫阴道分割(TVS)是一项具有挑战性的任务。为了应对这些挑战,我们精心阐述了Trichomonas Vaginalis的第一个大规模微观图像数据集,名为TVMI3K,由3,158张图像组成,涵盖了各种背景中的毛trichomonas,其中包括各种背景,具有高质量的注释,包括对象级别的掩护标签,包括对象的范围,对象范围和挑剔的属性和挑剔的属性。此外,我们提出了一个简单而有效的基线,称为TVNet,以自动从微观图像分割毛果片,包括高分辨率融合和前景 - 背景的注意模块。广泛的实验表明,我们的模型实现了卓越的细分性能,并且在定量和定性上都超越了各种尖端的对象检测模型,这使其成为促进电视任务中未来研究的有希望的框架。数据集和结果将在以下网址公开可用:https://github.com/cellrecog/cellrecog。

Trichomoniasis is a common infectious disease with high incidence caused by the parasite Trichomonas vaginalis, increasing the risk of getting HIV in humans if left untreated. Automated detection of Trichomonas vaginalis from microscopic images can provide vital information for the diagnosis of trichomoniasis. However, accurate Trichomonas vaginalis segmentation (TVS) is a challenging task due to the high appearance similarity between the Trichomonas and other cells (e.g., leukocyte), the large appearance variation caused by their motility, and, most importantly, the lack of large-scale annotated data for deep model training. To address these challenges, we elaborately collected the first large-scale Microscopic Image dataset of Trichomonas Vaginalis, named TVMI3K, which consists of 3,158 images covering Trichomonas of various appearances in diverse backgrounds, with high-quality annotations including object-level mask labels, object boundaries, and challenging attributes. Besides, we propose a simple yet effective baseline, termed TVNet, to automatically segment Trichomonas from microscopic images, including high-resolution fusion and foreground-background attention modules. Extensive experiments demonstrate that our model achieves superior segmentation performance and outperforms various cutting-edge object detection models both quantitatively and qualitatively, making it a promising framework to promote future research in TVS tasks. The dataset and results will be publicly available at: https://github.com/CellRecog/cellRecog.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源