论文标题
测试时间适应与校准的医学图像分类网的标签分布移位
Test-time Adaptation with Calibration of Medical Image Classification Nets for Label Distribution Shift
论文作者
论文摘要
班级分布在学习深分类器中起着重要作用。当测试集中每个类的比例与训练集不同时,分类网的性能通常会降低。由于疾病的患病率在位置和时间上有所不同,因此这种标签分布转移问题在医学诊断中很常见。在本文中,我们提出了第一种解决医学图像分类标签转移的方法,该方法有效地适应了从单个培训标签分布中学到的模型,以使其具有任意的未知测试标签分布。我们的方法创新了分配校准,以学习多个代表性分类器,这些分类器能够处理不同的一级分布。当给出测试图像时,不同的分类器通过一致性驱动的测试时间适应动态汇总,以处理未知的测试标签分布。我们在两个重要的医学图像分类任务上验证了我们的方法,包括肝纤维化分期和COVID-19的严重性预测。我们的实验清楚地表明了标签移位下模型性能的降低。借助我们的方法,模型性能可显着改善所有具有不同标签的医疗图像诊断任务的测试数据集的测试数据集。
Class distribution plays an important role in learning deep classifiers. When the proportion of each class in the test set differs from the training set, the performance of classification nets usually degrades. Such a label distribution shift problem is common in medical diagnosis since the prevalence of disease vary over location and time. In this paper, we propose the first method to tackle label shift for medical image classification, which effectively adapt the model learned from a single training label distribution to arbitrary unknown test label distribution. Our approach innovates distribution calibration to learn multiple representative classifiers, which are capable of handling different one-dominating-class distributions. When given a test image, the diverse classifiers are dynamically aggregated via the consistency-driven test-time adaptation, to deal with the unknown test label distribution. We validate our method on two important medical image classification tasks including liver fibrosis staging and COVID-19 severity prediction. Our experiments clearly show the decreased model performance under label shift. With our method, model performance significantly improves on all the test datasets with different label shifts for both medical image diagnosis tasks.