论文标题
语言模型中的理由授权合奏
Rationale-Augmented Ensembles in Language Models
论文作者
论文摘要
最近的研究表明,理性或逐步思想链可用于改善多步推理任务的性能。我们重新考虑了理由的提示,提示了几次射击中的内在学习,其中(输入 - >输出)提示将扩展到(输入,理由 - >输出)提示。对于以理由为提示的提示,我们证明了现有方法如何依赖手动及时工程的方法受到可能损害性能的次优理由。为了减轻这种脆弱性,我们提出了一个统一的由理由的合奏框架,在此框架中,我们将输出空间中的理由抽样确定为可鲁棒的绩效的关键组成部分。该框架是一般的,可以轻松地扩展到常见的自然语言处理任务,即使传统上不利于中间步骤的任务,例如问题回答,单词感官歧义和情感分析。我们证明,与现有的提示方法相比,以理由为原理的合奏获得了更准确和可解释的结果 - 包括标准提示,而没有理由和基于理由的链链链接提示,同时通过相关理性同时提高了模型预测的解释性。
Recent research has shown that rationales, or step-by-step chains of thought, can be used to improve performance in multi-step reasoning tasks. We reconsider rationale-augmented prompting for few-shot in-context learning, where (input -> output) prompts are expanded to (input, rationale -> output) prompts. For rationale-augmented prompting we demonstrate how existing approaches, which rely on manual prompt engineering, are subject to sub-optimal rationales that may harm performance. To mitigate this brittleness, we propose a unified framework of rationale-augmented ensembles, where we identify rationale sampling in the output space as the key component to robustly improve performance. This framework is general and can easily be extended to common natural language processing tasks, even those that do not traditionally leverage intermediate steps, such as question answering, word sense disambiguation, and sentiment analysis. We demonstrate that rationale-augmented ensembles achieve more accurate and interpretable results than existing prompting approaches--including standard prompting without rationales and rationale-based chain-of-thought prompting--while simultaneously improving interpretability of model predictions through the associated rationales.