论文标题

特征选择的图形空间注意网络,用于上瘾的脑网络识别

Feature-selected Graph Spatial Attention Network for Addictive Brain-Networks Identification

论文作者

Gong, Changwei, Jing, Changhong, Pan, Junren, Wang, Shuqiang

论文摘要

相关神经回路的功能改变是由于药物成瘾在一定时期发生的。这些重大变化也通过分析fMRI揭示。但是,由于fMRI的高维度和信噪比较差,对于图形水平识别和尼古丁成瘾(NA)和健康控制(HC)组之间的图形识别和区域级生物标志物检测任务的高效且强大的大脑区域嵌入是一项挑战。在这项工作中,我们将大鼠脑的fMRI表示为具有生物学属性的图形,并提出了一种新型特征选择的图形空间注意网络(FGSAN),以提取成瘾的生物标志物并从这些大脑网络中识别。特别是,使用图形空间注意编码器来捕获具有空间信息的时空脑网络的特征。该方法同时采用了贝叶斯特征选择策略,以通过约束功能来优化模型并改善分类任务。与成瘾相关的神经成像数据集进行的实验表明,所提出的模型可以获得卓越的性能并检测与成瘾的神经回路相关的可解释的生物标志物。

Functional alterations in the relevant neural circuits occur from drug addiction over a certain period. And these significant alterations are also revealed by analyzing fMRI. However, because of fMRI's high dimensionality and poor signal-to-noise ratio, it is challenging to encode efficient and robust brain regional embeddings for both graph-level identification and region-level biomarkers detection tasks between nicotine addiction (NA) and healthy control (HC) groups. In this work, we represent the fMRI of the rat brain as a graph with biological attributes and propose a novel feature-selected graph spatial attention network(FGSAN) to extract the biomarkers of addiction and identify from these brain networks. Specially, a graph spatial attention encoder is employed to capture the features of spatiotemporal brain networks with spatial information. The method simultaneously adopts a Bayesian feature selection strategy to optimize the model and improve classification task by constraining features. Experiments on an addiction-related neural imaging dataset show that the proposed model can obtain superior performance and detect interpretable biomarkers associated with addiction-relevant neural circuits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源