论文标题

基于冲突的搜索具有运动动力学约束的多机器人运动计划

Conflict-based Search for Multi-Robot Motion Planning with Kinodynamic Constraints

论文作者

Kottinger, Justin, Almagor, Shaull, Lahijanian, Morteza

论文摘要

多机器人运动计划(MRMP)是在运动动力学约束下为在环境中作用的多个机器人的非填充轨迹的基本问题。由于其复杂性,现有算法要么利用简化的假设或不完整。这项工作引入了基于运动动力冲突的搜索(K-CB),这是一种分散的(分离)MRMP算法,是一般,可扩展性和概率完成的。该算法从成功的解决方案到MRMP的离散类似物(被称为多试路径发现(MAPF))具有灵感。具体而言,我们将基于冲突的搜索(CBS)(一种流行的分散MAPF算法)调整为MRMP设置。这种适应性的新颖性是我们直接在连续领域工作,而无需离散化。特别是,动力学约束在本地进行治疗。 K-CBS计划使用低级计划者分别为每个机器人计划,并通过定义单个机器人的约束来解决机器人之间的冲突树以解决机器人之间的碰撞。低水平的计划者可以是用于运动动力学机器人的任何基于采样的树搜索算法,从而将单个机器人的现有计划者提升为多机器人设置。我们表明,K-CBS继承了低级计划者的(概率)完整性。我们说明了在几个案例研究和基准测试中K-CB的一般性和性能。

Multi-robot motion planning (MRMP) is the fundamental problem of finding non-colliding trajectories for multiple robots acting in an environment, under kinodynamic constraints. Due to its complexity, existing algorithms either utilize simplifying assumptions or are incomplete. This work introduces kinodynamic conflict-based search (K-CBS), a decentralized (decoupled) MRMP algorithm that is general, scalable, and probabilistically complete. The algorithm takes inspiration from successful solutions to the discrete analogue of MRMP over finite graphs, known as multi-agent path finding (MAPF). Specifically, we adapt ideas from conflict-based search (CBS) - a popular decentralized MAPF algorithm - to the MRMP setting. The novelty in this adaptation is that we work directly in the continuous domain, without the need for discretization. In particular, the kinodynamic constraints are treated natively. K-CBS plans for each robot individually using a low-level planner and and grows a conflict tree to resolve collisions between robots by defining constraints for individual robots. The low-level planner can be any sampling-based, tree-search algorithm for kinodynamic robots, thus lifting existing planners for single robots to the multi-robot settings. We show that K-CBS inherits the (probabilistic) completeness of the low-level planner. We illustrate the generality and performance of K-CBS in several case studies and benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源