论文标题

球形CNN如何使基于ML的扩散MRI参数估计受益?

How can spherical CNNs benefit ML-based diffusion MRI parameter estimation?

论文作者

Goodwin-Allcock, Tobias, McEwen, Jason, Gray, Robert, Nachev, Parashkev, Zhang, Hui

论文摘要

本文展示了球形卷积神经网络(S-CNN)在估算从扩散MRI(DMRI)的组织微结构的标量参数时,比常规完全连接的网络(FCN)具有不同的优势。这种微观结构参数对于识别病理学和量化其程度很有价值。但是,当前的临床实践通常获取仅由6个扩散加权图像(DWI)组成的DMRI数据,从而限制了估计的微结构指数的准确性和精度。已经提出了机器学习(ML)来应对这一挑战。但是,现有的基于ML的方法对于不同的DMRI梯度采样方案也不强大,它们也不是旋转等效的。对抽样方案缺乏鲁棒性需要为每个方案培训一个新的网络,从而使来自多个来源的数据分析变得复杂。缺乏旋转型号的可能结果是,训练数据集必须包含各种微叠加方向。在这里,我们显示了球形CNN代表了一种引人注目的替代方案,该替代方案对新的采样方案以及提供旋转模棱两可。我们表明可以利用后者以减少所需的训练数据点的数量。

This paper demonstrates spherical convolutional neural networks (S-CNN) offer distinct advantages over conventional fully-connected networks (FCN) at estimating scalar parameters of tissue microstructure from diffusion MRI (dMRI). Such microstructure parameters are valuable for identifying pathology and quantifying its extent. However, current clinical practice commonly acquires dMRI data consisting of only 6 diffusion weighted images (DWIs), limiting the accuracy and precision of estimated microstructure indices. Machine learning (ML) has been proposed to address this challenge. However, existing ML-based methods are not robust to differing dMRI gradient sampling schemes, nor are they rotation equivariant. Lack of robustness to sampling schemes requires a new network to be trained for each scheme, complicating the analysis of data from multiple sources. A possible consequence of the lack of rotational equivariance is that the training dataset must contain a diverse range of microstucture orientations. Here, we show spherical CNNs represent a compelling alternative that is robust to new sampling schemes as well as offering rotational equivariance. We show the latter can be leveraged to decrease the number of training datapoints required.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源