论文标题
在非加倍的通用Orlicz空间中的Bloch估计值
Bloch estimates in non-doubling generalized Orlicz spaces
论文作者
论文摘要
我们研究非自主函数的最小化器\ begin {align*} \ inf_U \int_Ωφ(x,x,| \ nabla u |)\,dx \ end end {align*}当$φ$已概括Orlicz的增长时。我们考虑了$φ$的上层增长率无限的情况,并证明了最小化器的Harnack不等式。我们的技术基于“截断”函数$φ$,以通过Bloch估计值估算近似最小化器的最小化和HARNACK估计值。
We study minimizers of non-autonomous functionals \begin{align*} \inf_u \int_Ωφ(x,|\nabla u|) \, dx \end{align*} when $φ$ has generalized Orlicz growth. We consider the case where the upper growth rate of $φ$ is unbounded and prove the Harnack inequality for minimizers. Our technique is based on "truncating" the function $φ$ to approximate the minimizer and Harnack estimates with uniform constants via a Bloch estimate for the approximating minimizers.