论文标题

按点注释端到端单元格识别

End-to-end cell recognition by point annotation

论文作者

Shui, Zhongyi, Zhang, Shichuan, Zhu, Chenglu, Wang, Bingchuan, Chen, Pingyi, Zheng, Sunyi, Yang, Lin

论文摘要

免疫组织化学染色图像的可靠定量分析需要准确稳健的细胞检测和分类。最近的弱监督方法通常估计细胞识别的概率密度图。但是,在密集的细胞场景中,由于无法找到通用参数设置,因此可以通过预处理和后处理来限制其性能。在本文中,我们引入了一个端到端框架,该框架应用了预设锚点的直接回归和分类。具体而言,我们提出了一种锥体特征聚合策略,可以同时组合低级特征和高级语义,该策略为我们的纯粹基于点的模型提供了准确的细胞识别。此外,优化的成本功能旨在通过匹配地面真相和预测点来调整我们的多任务学习框架。实验结果证明了该方法的卓越准确性和效率,该方法揭示了辅助病理学家评估的很大潜力。

Reliable quantitative analysis of immunohistochemical staining images requires accurate and robust cell detection and classification. Recent weakly-supervised methods usually estimate probability density maps for cell recognition. However, in dense cell scenarios, their performance can be limited by pre- and post-processing as it is impossible to find a universal parameter setting. In this paper, we introduce an end-to-end framework that applies direct regression and classification for preset anchor points. Specifically, we propose a pyramidal feature aggregation strategy to combine low-level features and high-level semantics simultaneously, which provides accurate cell recognition for our purely point-based model. In addition, an optimized cost function is designed to adapt our multi-task learning framework by matching ground truth and predicted points. The experimental results demonstrate the superior accuracy and efficiency of the proposed method, which reveals the high potentiality in assisting pathologist assessments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源