论文标题
宗旨:变压器编码网络,用于运动预测的有效时间流
TENET: Transformer Encoding Network for Effective Temporal Flow on Motion Prediction
论文作者
论文摘要
该技术报告提出了一种有效的自动驾驶运动预测方法。我们开发了一种基于变压器的方法,用于输入编码和轨迹预测。此外,我们提出了时间流动头来增强轨迹编码。最后,使用了有效的K-均值集合方法。使用我们的变压器网络和集合方法,我们以1.90的最先进的Minfde得分赢得了Argoverse 2 Motion预测挑战的第一名。
This technical report presents an effective method for motion prediction in autonomous driving. We develop a Transformer-based method for input encoding and trajectory prediction. Besides, we propose the Temporal Flow Header to enhance the trajectory encoding. In the end, an efficient K-means ensemble method is used. Using our Transformer network and ensemble method, we win the first place of Argoverse 2 Motion Forecasting Challenge with the state-of-the-art brier-minFDE score of 1.90.