论文标题

变分自动编码器辅助神经网络可能性RSRP预测模型

Variational Autoencoder Assisted Neural Network Likelihood RSRP Prediction Model

论文作者

Li, Peizheng, Wang, Xiaoyang, Piechocki, Robert, Kapoor, Shipra, Doufexi, Angela, Parekh, Arjun

论文摘要

衡量移动数据的客户体验对于全球移动运营商来说至关重要。收到的参考信号(RSRP)是当前移动网络管理,评估和监视的重要指标之一。通过最小化驱动器测试(MDT)(一种3GPP标准技术)收集的无线电数据通常用于无线网络分析。在不同地理区域收集MDT数据效率低下,并且受地形条件和用户的存在的限制,因此对于动态无线电环境来说不是足够的技术。在本文中,我们研究了RSRP预测,利用MDT数据和数字双胞胎(DT)的生成模型,并提出了一个数据驱动的两层神经网络(NN)模型。在第一层中,与用户设备(UE),基站(BS)和网络关键性能指标(KPI)有关的环境信息是通过变量自动编码器(VAE)提取的。第二层被设计为可能性模型。在这里,采用了环境功能和实际MDT数据功能,制定了集成的培训过程。在验证中,我们提出的使用现实世界数据的模型表明,与经验模型相比,与完全连接的预测网络相比,精度提高了约20%或更多。

Measuring customer experience on mobile data is of utmost importance for global mobile operators. The reference signal received power (RSRP) is one of the important indicators for current mobile network management, evaluation and monitoring. Radio data gathered through the minimization of drive test (MDT), a 3GPP standard technique, is commonly used for radio network analysis. Collecting MDT data in different geographical areas is inefficient and constrained by the terrain conditions and user presence, hence is not an adequate technique for dynamic radio environments. In this paper, we study a generative model for RSRP prediction, exploiting MDT data and a digital twin (DT), and propose a data-driven, two-tier neural network (NN) model. In the first tier, environmental information related to user equipment (UE), base stations (BS) and network key performance indicators (KPI) are extracted through a variational autoencoder (VAE). The second tier is designed as a likelihood model. Here, the environmental features and real MDT data features are adopted, formulating an integrated training process. On validation, our proposed model that uses real-world data demonstrates an accuracy improvement of about 20% or more compared with the empirical model and about 10% when compared with a fully connected prediction network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源