论文标题
在线性化弹性动力体中,具有Signorini-Type和Tresca摩擦条件的裂纹问题的独特可溶性
Unique solvability of a crack problem with Signorini-type and Tresca friction conditions in a linearized elastodynamic body
论文作者
论文摘要
我们考虑具有经过修改的接触定律的线性弹性体的动态运动,我们称之为动态类型的Signorini接触条件,以及TRESCA摩擦条件。尽管修改后的接触法涉及位移和速度,但正式包括通常的非渗透条件作为特殊情况。我们证明,对该模型有一个独特的强大解决方案。值得注意的是,不仅存在,而且还获得了独特性,并且在我们的模型中添加了无用作抛物线正则化的粘度项。
We consider dynamic motion of a linearized elastic body with a crack subject to a modified contact law, which we call the Signorini contact condition of dynamic type, and to the Tresca friction condition. Whereas the modified contact law involves both displacement and velocity, it formally includes the usual non-penetration condition as a special case. We prove that there exists a unique strong solution to this model. It is remarkable that not only existence but also uniqueness is obtained and that no viscosity term that serves as a parabolic regularization is added in our model.