论文标题

到达:taketa定理在M群中的概括

Erratum to : A generalization of Taketa's Theorem on M-groups

论文作者

Akhlaghi, Zeinab

论文摘要

在最近的论文[Taketa的M-groups的概括中,Quaestiones Mathematicae,(2022),https://doi.org/10.2989/16073606.2022.2081632],我们为非通用的a ac vente n venite n venite n a cys a ac g a in contime fife compentime vente compent fifter compent fife compent fife n of act n of ac g a。保证G的可溶性。尽管结果是正确的,但我们给出的例子表明,界限是不正确的。在本文中,我们找到了一个新的界限,并举例说明这种新的界限很锋利。实际上,我们通过假设ACDNM(g)<acdnm(SL2(5))= 19/7证明了G的可溶性。

In the recent paper [A generalization of Taketa's theorem on M-groups, Quaestiones Mathematicae, (2022), https://doi.org/10.2989/16073606.2022.2081632], we give an upper bound 5/2 for the average of non-monomial character degrees of a finite group G, denoted by acdnm(G), which guarantees the solvability of G. Although the result is true, the example we gave to show that the bound is sharp turns out to be incorrect. In this paper, we find a new bound and we give an example to show that this new bound is sharp. Indeed, we prove the solvability of G, by assuming acdnm(G) < acdnm(SL2(5)) = 19/7.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源