论文标题

Borsuk的分区问题四维$ \ ell_ {p} $ space

Borsuk's partition problem in four-dimensional $\ell_{p}$ space

论文作者

Wang, Jun, Xue, Fei

论文摘要

1933年,Borsuk猜想,每个$ n $维限制的套件都可以分为$ n+1 $较小直径的子集。到目前为止,问题仍然以$ 4 \ leq n \ leq 63 $开放。在本文中,我们首先讨论了$ n $维的立方体与$ \ ell_ {p} $ ball $(1 \ leq p <2)$之间的Banach-Mazur距离,然后我们研究了通用的Borsuk Borsuk的分区问题,在公制空间中的borsuk分区问题,并证明所有限制的$ x $ $ x $ $ x $ $ x $ $ x $ $ \ ell \ ell_ el \ ell_ el \ ell_ el \ ell_ p} p} 直径。

In 1933, Borsuk made a conjecture that every $n$-dimensional bounded set can be divided into $n+1$ subsets of smaller diameter. Up to now, the problem is still open for $4\leq n\leq 63$. In this paper, we firstly discuss the Banach-Mazur distance between the $n$-dimensional cube and the $\ell_{p}$ ball $(1\leq p< 2)$, then we study the generalized Borsuk's partition problem in metric spaces and prove that all bounded sets $X$ in every four-dimensional $\ell_{p}$ space can be divided into $2^4$ subsets of smaller diameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源