论文标题

X-Cube模型的边界理论

Boundary theory of the X-cube model in the continuum

论文作者

Luo, Zhu-Xi, Spieler, Ryan C., Sun, Hao-Yu, Karch, Andreas

论文摘要

我们使用连续观点研究了$ \ Mathbb {z} _n $ x-Cube模型的边界理论,从中可以从中恢复大量激发子集的交换统计数据。我们讨论了各种间隙的边界条件,这些条件要么保留或打破边界上的翻译/旋转对称性,并在$ t^2 \ times i $上进一步介绍相应的基态归化。低能物理学对边界条件高度敏感:即使在两个边界选择不同的边界条件集时,基态变性的广泛部分也会有所不同。我们还研究了边界理论的异常流入,发现X-Cube模型不是取消边界hooft异常的唯一(3+1)d理论。

We study the boundary theory of the $\mathbb{Z}_N$ X-cube model using a continuum perspective, from which the exchange statistics of a subset of bulk excitations can be recovered. We discuss various gapped boundary conditions that either preserve or break the translation/rotation symmetries on the boundary, and further present the corresponding ground state degeneracies on $T^2\times I$. The low-energy physics is highly sensitive to the boundary conditions: even the extensive part of the ground state degeneracy can vary when different sets of boundary conditions are chosen on the two boundaries. We also examine the anomaly inflow of the boundary theory and find that the X-cube model is not the unique (3+1)d theory that cancels the 't Hooft anomaly of the boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源