论文标题

通过非标准理论对$ f(\ bar {r},\ bar {t})$重力的宇宙学影响

Cosmological effects on $f(\bar{R},\bar{T})$ gravity through a non-standard theory

论文作者

Panda, Arijit, Ray, Saibal, Manna, Goutam, Das, Surajit, Ranjit, Chayan

论文摘要

这项研究旨在通过利用$ f(\ bar {r},\ bar {t})$重力来调查黑暗能量在宇宙学场景中的影响表示与{\ bf k-}本质几何形状相关的能量量张量的痕迹。 dirac出生的Infeld(DBI)非标准拉格朗日已被用来生成与{\ bf k-}本质相关的紧急重力度量$(\ bar {g} _ {μν})$。该度量与通常的重力度量$(g_ {μν})$不同。已经表明,在平坦的FLRW背景重力度量标准下,修改的场方程和$ f(\ bar {r},\ bar {t})$重力的Friedmann方程与通常的f {t})$重力不同。为了获得状态方程(EOS)参数$ω$,我们通过考虑函数$ f(\ bar {r},\ bar {t})\ equiv f(\ bar {r})+λ\ v bar {t} $,其中$λ$代表模型内的参数。我们发现了$ω$与时间之间的关系,用于不同种类的$ f(\ bar {r})$,通过将{\ bf k-}本质标量场($ \ dotx^{2} $)视为暗能量密度,随着时间的推移而波动。出乎意料的是,此结果符合$ \ dotϕ^{2} $的限制条件。通过随时间显示EOS参数的图形表示形式,我们表明我们的模型与$ SNIA $+$ $ $ BAO $+$ h(z)$在某个时间间隔内的数据一致。

This study aims to investigate the impact of dark energy in cosmological scenarios by exploiting $f(\bar{R},\bar{T})$ gravity within the framework of a {\it non-standard} theory, called {\it {\bf K-}essence} theory, where $\bar{R}$ represents the Ricci scalar and $\bar{T}$ denotes the trace of the energy-momentum tensor associated with the {\bf K-}essence geometry. The Dirac-Born-Infeld (DBI) non-standard Lagrangian has been employed to generate the emergent gravity metric $(\bar{G}_{μν})$ associated with the {\bf K-}essence. This metric is distinct from the usual gravitational metric $(g_{μν})$. It has been shown that under a flat FLRW background gravitational metric, the modified field equations and the Friedmann equations of the $f(\bar{R},\bar{T})$ gravity are distinct from the usual ones. In order to get the equation of state (EOS) parameter $ω$, we have solved the Friedmann equations by taking into account the function $f(\bar{R},\bar{T})\equiv f(\bar{R})+λ\bar{T}$, where $λ$ represents a parameter within the model. We have found a relationship between $ω$ and time for different kinds of $f(\bar{R})$ by treating the kinetic energy of the {\bf K-}essence scalar field ($\dotϕ^{2}$) as the dark energy density which fluctuates with time. Surprisingly, this result meets the condition of the restriction on $\dotϕ^{2}$. By presenting graphical representations of the EOS parameter with time, we show that our model is consistent with the data of $SNIa$+$BAO$+$H(z)$ within a certain temporal interval.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源