论文标题

一种基于混合级别的学习群算法和突变操作员,用于解决大规模基数约束的投资组合优化问题

A hybrid level-based learning swarm algorithm with mutation operator for solving large-scale cardinality-constrained portfolio optimization problems

论文作者

Kaucic, Massimiliano, Piccotto, Filippo, Sbaiz, Gabriele, Valentinuz, Giorgio

论文摘要

在这项工作中,我们提出了基于水平的学习群优化器(LLSO)的混合变体,用于解决大规模的投资组合优化问题。我们的目标是最大程度地提高夏普比率的改进配方,但要受到基数,框和预算限制的影响。该算法涉及一个投影操作员同时处理这三个约束,并且由于重新平衡的约束,我们隐式控制交易成本。我们还引入了合适的确切惩罚功能来管理营业额约束。此外,我们开发了一个临时突变操作员,以修改群体最高水平的候选示例。实验结果使用三个大规模数据集,表明该过程的包含提高了解决方案的准确性。然后,与LLSO算法的其他变体和两种最先进的群体优化器的比较指出了拟议求解器在探索能力和解决方案质量方面的出色性能。最后,我们使用MSCI世界指数的1119个成分的可投资库评估了过去五年中投资组合分配策略的盈利能力。

In this work, we propose a hybrid variant of the level-based learning swarm optimizer (LLSO) for solving large-scale portfolio optimization problems. Our goal is to maximize a modified formulation of the Sharpe ratio subject to cardinality, box and budget constraints. The algorithm involves a projection operator to deal with these three constraints simultaneously and we implicitly control transaction costs thanks to a rebalancing constraint. We also introduce a suitable exact penalty function to manage the turnover constraint. In addition, we develop an ad hoc mutation operator to modify candidate exemplars in the highest level of the swarm. The experimental results, using three large-scale data sets, show that the inclusion of this procedure improves the accuracy of the solutions. Then, a comparison with other variants of the LLSO algorithm and two state-of-the-art swarm optimizers points out the outstanding performance of the proposed solver in terms of exploration capabilities and solution quality. Finally, we assess the profitability of the portfolio allocation strategy in the last five years using an investible pool of 1119 constituents from the MSCI World Index.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源