论文标题
polydisc上的组成操作员
Composition operators on the polydisc
论文作者
论文摘要
我们研究了在加权伯格曼空间上的组成算子的界限和polydisc上的耐寒空间。 对于任意的polydisc,我们证明了秩式定理,尤其是为我们提供了一个简单的标准,描述了bidisc上空间上构图运算符的界限。对于Tridisc上的经典伯格曼空间,获得了这种一致的表征。
We study the boundedness of composition operators on the weighted Bergman spaces and the Hardy space over the polydisc. For arbitrary polydisc we prove the rank sufficiency theorem which, in particular, provides us with a simple criterion describing boundedness of composition operators on the spaces over the bidisc. Such a consistent characterization is obtained for the classical Bergman space over the tridisc.