论文标题
有效的光锥和相互作用玻色子的数字量子模拟
Effective light cone and digital quantum simulation of interacting bosons
论文作者
论文摘要
信息传播的速度极限是非平衡物理学中最基本的特征之一。有限时间动力学的信息传播区域大约受到Lieb-Robinson结合制定的有效光锥体内的限制。迄今为止,已经进行了广泛的研究,以识别大多数实验相关的多体系统中有效光锥的形状。但是,在自然界中最普遍的量子系统之一的相互作用的玻色子系统中,Lieb-Robinson束缚在相互作用的玻色子系统中,长期以来一直是一个关键的开放问题。这项研究揭示了一个紧密的有效光锥,以限制相互作用玻色子中的信息传播,其中有效的光锥的形状取决于空间尺寸。为了实现这一目标,我们证明了玻色子团结在一起的速度是有限的,这又导致每个位点上玻色子数截断的误差保证。此外,我们应用了该方法来提供一种可证明有效的算法来模拟相互作用的玻色子系统。这项研究的结果解决了臭名昭著的具有挑战性的问题,并为阐明多体玻色子系统的复杂性奠定了基础。
The speed limit of information propagation is one of the most fundamental features in non-equilibrium physics. The region of information propagation by finite-time dynamics is approximately restricted inside the effective light cone that is formulated by the Lieb-Robinson bound. To date, extensive studies have been conducted to identify the shape of effective light cones in most experimentally relevant many-body systems. However, the Lieb-Robinson bound in the interacting boson systems, one of the most ubiquitous quantum systems in nature, has remained a critical open problem for a long time. This study reveals a tight effective light cone to limit the information propagation in interacting bosons, where the shape of the effective light cone depends on the spatial dimension. To achieve it, we prove that the speed for bosons to clump together is finite, which in turn leads to the error guarantee of the boson number truncation at each site. Furthermore, we applied the method to provide a provably efficient algorithm for simulating the interacting boson systems. The results of this study settle the notoriously challenging problem and provide the foundation for elucidating the complexity of many-body boson systems.