论文标题
使用基于复杂性的方法在EMU试点调查中识别异常无线电源
Identifying anomalous radio sources in the EMU Pilot Survey using a complexity-based approach
论文作者
论文摘要
宇宙的进化图(EMU)大区域无线电连续体调查将检测数千万的射电星系,为检测以前未知类别的对象提供了机会。为了最大程度地提高科学价值并进行新发现,对这些数据的分析将需要超越简单的视觉检查。我们提出了与图像的最小描述长度有关的粗粒复杂性,可用于识别异常结构的最小描述长度。可以计算复杂性,而无需参考更广泛的样本或现有目录数据,从而使计算在很大范围内的新调查(例如完整的EMU调查)上有效。我们将粗粒颗粒的复杂度度量应用于来自EMU初步调查的数据,以检测和确认该数据集中的异常对象并产生异常目录。我们没有使用特定的源检测算法处理现有的目录数据,而是对该区域进行盲目扫描,从而使用滑动方形光圈计算复杂性。使用通过zooniverse.org平台生成的众包标签评估复杂度度量识别异常对象的有效性。我们发现,复杂性扫描通过对复杂性进行分区来识别异常的来源,例如奇数无线电圈。我们实现分区,其中5%的数据估计为86 \%,并且相对于异常,估计为94 \%\%\%\%\%\%,并使用它来产生异常目录。
The Evolutionary Map of the Universe (EMU) large-area radio continuum survey will detect tens of millions of radio galaxies, giving an opportunity for the detection of previously unknown classes of objects. To maximise the scientific value and make new discoveries, the analysis of this data will need to go beyond simple visual inspection. We propose the coarse-grained complexity, a simple scalar quantity relating to the minimum description length of an image, that can be used to identify unusual structures. The complexity can be computed without reference to the broader sample or existing catalogue data, making the computation efficient on new surveys at very large scales (such as the full EMU survey). We apply our coarse-grained complexity measure to data from the EMU Pilot Survey to detect and confirm anomalous objects in this data set and produce an anomaly catalogue. Rather than work with existing catalogue data using a specific source detection algorithm, we perform a blind scan of the area, computing the complexity using a sliding square aperture. The effectiveness of the complexity measure for identifying anomalous objects is evaluated using crowd-sourced labels generated via the Zooniverse.org platform. We find that the complexity scan identifies unusual sources, such as odd radio circles, by partitioning on complexity. We achieve partitions where 5\% of the data is estimated to be 86\% complete, and 0.5\% is estimated to be 94\% pure, with respect to anomalies and use this to produce an anomaly catalogue.